Unsupervised Gene Selection and Clustering Using Simulated Annealing

نویسندگان

  • Maurizio Filippone
  • Francesco Masulli
  • Stefano Rovetta
چکیده

When applied to genomic data, many popular unsupervised explorative data analysis tools based on clustering algorithms often fail due to their small cardinality and high dimensionality. In this paper we propose a wrapper method for gene selection based on simulated annealing and unsupervised clustering. The proposed approach, even if computationally intensive, permits to select the most relevant features (genes), and to rank their relevance, allowing to improve the results of clustering algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cat swarm optimization clustering (KSACSOC): A cat swarm optimization clustering algorithm

Clustering is an unsupervised process that divides a given set of objects into groups so that objects within a cluster are highly similar with one another and dissimilar with the objects in other clusters. In this article, a new clustering method based on cat swarm optimization was proposed to find the proper clustering of data sets called K-means improvement and Simulated Annealing selection b...

متن کامل

Model Selection in Clustering by Uniform Convergence Bounds

Unsupervised learning algorithms are designed to extract structure from data samples. Reliable and robust inference requires a guarantee that extracted structures are typical for the data source, Le., similar structures have to be inferred from a second sample set of the same data source. The overfitting phenomenon in maximum entropy based annealing algorithms is exemplarily studied for a class...

متن کامل

Robust Unsupervised Clustering Using Generalized Annealing M-estimator

A new robust clustering algorithm, called generalized annealing M-estimator (GAM-estimator), is proposed. Initialized with multiple seeds, the GAM-estimator converges to several optimal cluster centers. Neither knowledge about the number of clusters nor scale is needed. The global optimal solution of clustering is achieved by minimization of an objective function. The algorithm is applied to un...

متن کامل

An unsupervised clustering method using the entropy minimization

We address the problem of unsupervised clustering using a Bayesian framework. The entropy is considered to define a prior and enables us to overcome the problem of defining a priori the number of clusters and an initialization of their centers. A deterministic algorithm derived from the standard k-means algorithm is proposed and compared with simulated annealing algorithms. The robustness of th...

متن کامل

A Simulated Annealing Clustering Algorithm Based On Center Perturbation Using Gaussian Mutation

Clustering, the unsupervised classification of objects into groups, is a widely used technique in exploratory data analysis. The clustering problem is a very complex one, and a popular heuristic for solving it is the Simulated Annealing (SA) algorithm. SA is an approximation algorithm that involves generating a neighborhood solution by perturbing the current solution in a small, yet meaningful ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005